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Nucleation on the crack tip and transformation 
toughness in crystals undergoing structural 
phase transitions 

A. A. BULB ICH 
Research Institute of Physics, Rostov State University, Rostov-on-Don, USSR 

Stress-induced local phase transition on both motionless and moving cracks is considered. The 
asymptotically exact solution describing a small nucleus of a new phase on a crack tip is obtained. 
The nucleation temperature value is determined and nuclei phase diagram is constructed on the 
background of a phase diagram of bulk transition. It is demonstrated that nucleation is possible 
only during slow subcritical crack growth. The exact solution of the phase boundary equilibria 
equation is obtained for the case of a large nucleus. It is shown that fracture toughness has 
a maximum near the transition point. 

1. Introduction 
The existence of stress concentrators in crystals can be 
the origin of new phase nuclei arising when the tem- 
perature, To, is higher than the temperature of a phase 
transition in the bulk, To, if the solid undergoes phase 
transitions (PT) under the applied stress. Nuclei affect 
the solid body mechanical properties related to the 
concentrators' behaviour - the fracture toughness, 
ductility, internal friction and so on. 

Local (L) PT generated by cracks were observed 
due to the existence of a "trail" - a thin layer of a new 
phase on a fracture surface differing from that in the 
bulk of crystal. Monoclinic and orthorhombic trails 
were observed on the tetragonal ZrO2 fracture surface 
[1, 2] a graphite trail under the thermal fracture of 
diamonds [3], a martensitic trail under the fatigue 
steel fracture [4], and a ferroelectric phase trail under 
the Pb(Ti, Zr)O3 fracture [5]. 

The results of the direct evidence of the martensitic 
LPT on the crack tip in the martensitic-austenitic 
alloy Fe-28Ni-3Ti-0.6A1 foil is shown in Fig. 1 which 
was taken using a transmission electron microscope 
during the process of the crack growth. The dark 
background indicates the martensitic phase, localized 
at the crack tip, b, and a trail, c, which is partially 
twinned. 

LPT on dislocations were observed in gadolinium 
iron garnet [6, 7], in NHaBr [8] and in the NicMo 
alloy [9]. 

It has been established that the nucleus arising on 
the crack tip is followed by an increase in fracture 
toughness in ZrO2 monocrystals and ceramics 
[1,2, 10, 11] and in the composites A1203-ZrO2, 
ZnO-ZrO2, Si3N,-ZrO2 [12, 13] and in the high- 
temperature superconductor YBa/Cu3OT_x-ZrO2 
[14]. 

The increase in fracture toughness was predicted 
[16] (and then further considered [11, 17-19]) from 
the proposition that the trail free energy density is 
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more than that in the bulk of the crystal. The trail 
energy renorms the surface crack energy o o 

cy = cy o + p , A f  (1) 

where P, is the trail width and k f  the phase free 
energy difference. The fracture toughness increases 
as [16] 

2eyE 
K I 2  - -  1 - -  V 2 (2) 

where E is the Young's modulus and v is Poisson's 
ratio. P, and Af  were supposed to be independent 
[11, 16 19]. In this case Kic becomes a maximum on 
the two-phase region boundary of the phase diagram. 
This is, however, contrary to the experimental K~c(X) 
dependence o n  ( Z r O 2 ) l _  x (Y203)x [10, 20]. Klc in- 
creases from 1.7 MNm-3/2 at 20 wt % Y203, which 
corresponds to the cubic phase, to 8 MNm-3/2 at 
4 wt % Y203 (the region of tetragonal and monoclinic 
phases coexistence). The mean strength changed from 
210 MPa at 20wt % Y/O3 to 1000 MPa at 6 and 
4 wt % Y 2 0 3  with the maximum value 1400 MPa at 
5 wt % Y203 [10]. The strength and fracture tough- 
ness thus have a maximum and decrease with distance 
from the PT point. The contradiction arose because 
the phase boundary equilibria equation (which estab- 
lishes the p , (Af)  dependence) was not taken into 
account. 

The problem of determining the conditions of 
a crack tip nucleus arising and a nucleus phase dia- 
gram description have not yet been investigated. 

In this paper the structural LPT on the crack tip in 
the brittle solid is described. The nucleation temper- 
ature is determined for crystals undergoing a second- 
order PT as well as a first-order PT close to a 
second-order PT and a phase diagram of a nucleus is 
constructed. Anomalies of physical properties at the 
nucleation point are calculated. The nucleation on 
a moving crack tip is investigated. It is demonstrated 
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Figure 1 Local phase transition on the crack tip in the martensite austenite Fe-28Ni 3Ti~).6AI alloy foil. (a) The crack (b) the martensite 
nuclei (c) the martensite trail, which is partially twinned. Background-the austenite phase. (Reproduced with kind permission of 
Dr V. I. Isotov Central Black Metallurgy Research Institute, USSR) 

that there is a critical value of the crack tip speed, vc, 
such that if v ~> vc the crack tip nucleus cannot arise. 
The exact solution of the nucleus phase boundary 
equation is obtained for the case of a large nucleus and 
the transformation toughness is found to be a max- 
imum near the PT point. 

2. Nucleus arising on the  t ip of  a 
mot ion less  crack 

Consider an elastically isotropic crystal undergoing 
PT with decreasing temperature or under the applied 
stress. In the simplest case of PT described by a one- 
component order parameter (OP) q, the crystal 

potential has the form 

f~ = fv [f~,(Uik) +f(q) + ½g(Vq) 2 

--  A r l 2 u i i ] d V - }  - f s ( ( Y o  - piul)dS (3) 

where 

fel(ulk) = ½XoUz 2 + gu/~ (4) 

f ( q )  = ½~n2 + ¼13q4 + ~yq6 (5) 

X o = E v / ( 1  - 2v)(1 +v) ,  g = E / 2 ( 1  + v )  are the 
elastic constants, uik the strain tensor, ui the displace- 
ment vector, Vthe crystal volume, S the crystal surface 
area, p~ the force applied to  the crystal surface, g, ~, 13 
and ? the phenomenological constants: g, Y > 0, but 

and 13 can change their signs with a change of the 
external thermodynamic parameters, ~ = ~ ' ( T -  To), 
T the temperature, and A is the striction factor.* 

Equation 3 describes the PT from the homogeneous 
phase rl = 0 to the homogeneous phase rl = constant 
in a crystal which does not contain any crack. The 
phase diagram of a crystal without a crack which is 
free of stress is shown in Fig. 2 on the plane (~, 13). 

If ~ 1  = 13 - -  6A2(1 - 2v)/E > 0 the second-order 
PT takes place on the line ~ = 0 of the phase diagram. 
If 131 < 0 - the first-order PT takes place on the line 

* The term ~ q2u u in Equation 3 leads to the spontaneous dilatation arising (which always follows PT). If PT results is the elementary cell 
multiplication, the other types of spontaneous deformation are absent. The exceptions are the improper ferroelastics, which are not under 
consideration here. 
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s = 3132/167 (the line 1, Fig. 2). Phases coexist be- 
tween the lines s = [512/47 (line 2, Fig. 2) and s = 0, 

[ 5 1 < 0 .  

Consider the infinite crystal containing the flat 
crack, length 2a, situated symmetrically with respect 
to the coordinates origin along the Ox axis, opened by 
the normal  force. 

The state equations which follow from the min- 
imum conditions of functional 3 are 

gArl = (s  - 2 A u u ) q + 1 3 r 1 3 + y r  15 

8~ik 
- -  0 

OXk 

Oik = )LO1All~ik -5 21.tUik -- Arl2~ik (6) 

~ikrlk -= pi(t) t e L  

where A -- ~2/~X2 -'~ ~2/~y2,  (Yik is the stress tensor, 
L the crack contour  and nk the normal  unit. The 
boundary  condit ion o y r = - p ( t ) ,  t e L  corresponds 
to the case of the normal  force applied to the crack 
surface. 

When considering the problem of a nucleus arising, 
one has to demand r l ( ~  ) = 0. Besides, O P  is limited 
everywhere, due to it's physical origin. 

The reason for a nucleus of a phase 1"1 -~ 0 arising on 
the background  of a phase rl = 0 is the "local Curie 
temperature" decreasing near the crack tip: the factor 
multiplying q 2 can be written as Sef = s ' ( T -  T~(r, 0)), 
where T¢(r, O) = T ¢ -  2Auii(r, 0) /e '  is the "local 
Curie temperature". The Sef(r, 0) = 0 condit ion gives 
a rough nucleus size estimation* if the gradient terms 
in (3) are neglected. The solution of the equation 
r = r(0) > 0 exists if A > 0 this will be assumed in 
the rest of the paper. 

< l 
3 

o o oo~o 

Figure2 Phase diagram of nucleation on the crack tip on the 
background of phase diagram of transition in the bulk of crystal. 
1. The energy equality line of the bulk phases r I = 0 and q ~ 0 (the 
first-order phase transition line). 2.. The instability line for the phase 
r I ~ 0 (for the first-order transition in the bulk). 3. The line ~ = ~o. 
4. The line of energy equality of a crack with nucleus and a crack 
without nucleus f~({) = f~o. 5. The instability line for the solution 

~ 0. 6~the transition line in the case of moving crack. 

At high temperatures (large values of s)  Equat ion 6 
has the solution 

1"1 = 0 

KI 
(y}o) " ( 2 ~ 1 / 2  f/k(0) (7) 

where 

1 I a ( a + x ]  ~/2 
- - -  p ( x ) d x  (8) KI (ga)  1/2 ,)-a \ a -- x /  

is the stress intensity factor; r and 0 are the cylindrical 
coordinates counted off the crack tip, f~k(0), the well 
known stress angle dependence [15]. Its trace is 
f~,(O) = 2cos (0/2). 

If, however, s becomes smaller then So, the first 
eigenvalue of  the equat ion 

cos(0 /Z) ' ]  
9AtP,  = % -  B rl/-- Y ] W ,  (9) 

4AK1(1 - 2v)(1 + v) 
B = 

(2rQ 1/2 E 

the small solution 

n = ~ % ( r , O )  o,k = ~ ! o ~ + o ( ~ )  (10) 

branches off (Equation 7). Here tP o is the eigenfunc- 
tion corresponding to So. The amplitude ~ is to be 
determined. 

The exact solution of the anisotropic Shr6dinger 
equation 9 is interesting in itself and is given in 
Appendix 1. 

The result is 

1 ( 2 K I A ( 1  - 2 v ) ( l + v ) ( 2 f i z ) l / 2 ) 4 / 3  
So - 161/3 g - 7 / , ~  

(11) 

- + ( 4 )  1/3 
4o (s2(0)) 1/a exp (4) 1/3 ro 

x - -  cos (0/2)  (12) 
k r o /  

where the normalizat ion factor s2(0) ~ 175 

ro = 2AK,(1 --2-v)(1 + v) (n/2)1/2 (13) 

is the nucleus radius. 
The branching point  value (Equation 11) is ob- 

tained as a result of the exact solution (Appendix 1) 
and gives the exact nucleation temperature value To as 
So = s ' ( T o -  To). However,  Equat ions 10 and 12, 
give the main term of the solution of Equat ion 6 and 
have to be considered asymptotically exact if the 
amplitude ~ is small enough. 

The O P  distribution corresponding to the nucleus 
on the motionless crack tip (Equations 10 and 12) is 
displayed in Fig. 3a. Substitution of the solution 
(Equation 10) into the functional (Equation 3) gives 

* This estimation is true in the region of developed nucleus existence r0 >> re, where ro is the nucleus s~ze as r~ ~(g/~) 1/2 the correlation radius. 
In Sections 1-4 the case of the nucleus arising and close overcritical regime 1" o ~ r~ is considered. In this case the estimation can give only the 
sign of A. 
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Figure 3 T h e  o r d e r  p a r a m e t e r  r l (x ,  y)  d i s t r i b u t i o n  at  the  t ip  o f (a )  m o t i o n l e s s  c r a c k  (t0,  12) (b) m o v i n g  c r a c k  (22). I the  c rack ,  [I  the  nuc leus ,  
I l I  the  u n s t a b l e  t ra i l .  T h e  a m p l i t u d e s  were  c h o s e n  to  be e q u a l  d u r i n g  (a) a n d  (b) d i s t r i b u t i o n  c o n s t r u c t i o n .  

the fl potential of the crack with the nucleus 

o 
n(~,) = n o + ~ g l  (~-~o)~ ~ + ~ - ~ , ~  

0.00048 ) 
+ - -  6 7~6 (14) 

where I is the crystal length in the O z  direction and flo 
the mechanical and surface crack energy 

= [3 - A2(1 - 2v)(1 + v ) [2  + 0.77(1 - 2v)] 
E ( 1  - v )  

(15)  

The potential (Equation 14) is obtained in 
Appendix 2. 

3. Phase diagram of nucleus on the 
motionless crack tip 

The f~ potential (Equation 14) describes the PT from 
the state without a nucleus ({ = 0) to the state { ~ 0 

:responding to the nucleus existing on the crack tip 
(~ # 0). ~ plays the role of OP in this transition. It has 

be determined from the minimum conditions of 
(Equation 14): ~f2/8~ = 0; ~ 2 ~ ' ~ / ~ 2  > O. 

If [3 > 0 the six-order term in (Equation 14) can be 
neglected and 

(16) 
- 5 6 ( a - a o ) / ~  0 < a < % 

If ~ is small by its absolute value and negative 

I~1 + [ ~  - s . 9 r ( ~  - ~o)] ~a 
~2 ~ 18.8 (17) 

7 

The nucleus phase diagram is drawn on the back- 
ground of the phase diagram of the transition in the 
bulk of the crystal (Fig. 2). 

If ~ > 0 the nucleation takes place on the line 
= So (line 3, Fig. 2) by way of second-order PT. If 
< 0, the real solution of (Equation 17) appears 

below the line :z ~ :% + 0.17~2/y (line 5, Fig. 2). 
~(~) > no here, however, and the state without a nu- 
cleus is thermodynamically advantageous, fl(~) = ~1o 
on the line a ~ So + 0.13~2/7 (line 4, Fig. 2), below 
this line the state with a nucleus is thermodynamically 
advantageous. The shaded region is the phase dia- 
gram region of nuclei existence. Lines 1 and 4 intersect 
but the intersection point lies far from the region 
where this theory can be used. 

The observable nucleus size increases continuously 
if ~ > 0, being equal to zero on the line a = So. If 

< 0, however, the nucleus arises on line 5, with finite 
value of ~ and of observable size. The nucleus size 
grows with decreasing temperature and occupies the 
whole crystal when the line ~ = 0, 131 > 0 or the line 1, 
131 < 0 is reached. 

Such behaviour demonstrated nuclei on disloca- 
tions in iron garnet [6, 7]. 

4 .  N u c l e a t i o n  o n  t h e  t i p  o f  a m o v i n g  
c r a c k  

The nucleus phase diagram and nearly overcritical 
nucleus regime on the motionless crack tip is de- 
scribed above. In order to understand nuclei fracture 
influence, it is necessary, however, to investigate 
nucleation on a moving crack tip. 

If v /c  < 1 (here v is the crack tip speed and c the 
speed of sound in the crystal), the stress distribution is 
close to that near the motionless crack tip in the 
coordinate system moving with the crack [-22]. 

The dynamic equation for OP is 

kOq St - g A q  - (cz - 2 A u u ( ~ , y ) ) q  - [3q3 y q 5  

(18) 

if the thermometric conductivity is much greater than 
g /k ,  where k > 0 is the kinetic factor, ~ = x - v t ;  the 
coordinate origin is in the right crack tip. The term 
~21~/~t2 which is usually taken into account in 

1 0 7 3  



T A B L E  I 
VAULES OF s.(8) 

5 = rokv/2 9 

;o°; $2(~ ) = exp{ - 2fipcosO - 29/41/3 + 2(4) 1/3 pl/2cos(O/2)} pdpdO 
n 

I ~ I ~ ~os(0/2) eo~(r, ' 0k~ dr~ d0; 
si(6) = Jo ,J-~ rl/2 

;if s,(6) = ~g(r~,O)r~dradO/rg (n = 4,6) 

s 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.61 0.62 

Sz 174.7 112.3 85.0 75.3 81.4 12.5 871.7 1352 3102 
s4 0.018 0.020 0.020 0.019 0.014 0.008 0.001 6 x 10 -4 3 x 10 -4 
s 6 x 10 -5 47 61 65 55 33 9.6 0.17 0.057 0.013 
s; 0.53 0.55 0.54 0.50 0.42 0.29 0.078 0.055 0.034 
s,~/s6 0.69 0.66 0.65 0.65 0.59 0.59 0.59 0.63 0.60 

Equation 18 can be neglected here due to low crack 
speed (as shown by the estimations in Section 9). 

A solution of Equation 19 of the form q = q(~, y) 
should be tried. The non-trivial solution (Equation 19) 
branches off the solution rl - -0  if ~ ~ &o the first 
eigenvalue of the equation 

- a . -  B ( ~  2 q~. = 0 (19) 

It is 

k 2 v  2 

&o = ~ o - - -  (20) 
4g 

So is given by Equation 11. The branched-off 
solution is 

exp - ~ u?o(rl ,0) (21) 

°do is given by expression 12, but in Equation 12 
r must be replaced by rl = (42 + y2)1/2, s2(6) is the 
normalization factor, 6 = rokv/2g. The OP distribu- 
tion (Equation 21) is shown in Fig. 3b. 

One can  see, that if v = v~, where 

4gSo 
v~ = k2 (22) 

&o = 0, so if v ~> vc the nucleation on the crack tip is 
impossible. That is why transformation toughness can 
be realized only during slow subcritical crack growth. 

The equation of state for the amplitude ~ can be 
found by the same method used for the case of the 
motionless crack (Appendix 2). The f~ potential of the 
crack has the form 

s4(~) 
n(~) = no + r21 ~(s  -- &o)~2 -I- T 13~4- 

-/t- ~ "y~ 6 ) (23) 
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in the A2/E ,~ 1 case. Here 

fo°; s,(6) = q~ (rx, O)rl dr1 dO/r 2. 
r~ 

The values of s,(6) for different values of v < vc are 
given in Table I. (vc corresponds to 6c = 4 - 1/3 ~ 0.63.) 

If 13 > 0 second-order PT takes place on the line 
s = &o (&o < So), but if 13 < 0 the first-order PT takes 
place on the line S = & o +  3(se(6))z132/(16s6(6)y) 
(line 6, Fig. 2). 

Table I makes it clear that the value (s4(6))2/s6(6) 
weakly depends on 6, so the transition line for the 
nucleation on the moving crack tip repeats that for the 
motionless crack and lies below it. 

5. T w o  kinds of  trai ls 
The OP distribution (Fig. 3b) is stretched towards the 
direction opposite to the speed of the crack tip (in 
comparison to OP distribution on the motionless 
crack). The nucleus size in this direction 

Lt = (4) i73 ro 

becomes infinite if v =. vc - 0. Let us call this part of 
OP distribution, the trail. 

This trail is unstable. It arises because of slow OP 
relaxation in the indicated region of crystal. 

Another kind of trail is, however, possible in the 
case of first-order PT - the metastable trail. 

The region of existence of nuclei on a crack tip 
overlaps with the region of phase diagram of the 
homogeneous crystal in which phases r I = 0 and 
q = constant coexist, but the phase r I = 0 is thermo- 
dynamically advantageous (the double shaded part of 
the phase diagram, Fig. 2). The inequality ~(8) > q l  
is true in this region (here ~(6) is the solution of the 
state equation which follows from the minimum con- 
dition of the potential (Equation 22), q 1 is that value 
of the OP which gives a maximum to f ( q )  (Equation 
5), Fig. 4). This inequality realization results in OP 
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Figure 4 Density of El-potential dependence on order parameter in 
the two-phase region of phase diagram. 

Figure 5 A metastable trail arising. Shaded is the trail, twice 
shaded-is the nucleus on the crack tip. (a) The order parameter 
dependence of f2-potential density in the bulk of a crystal. (b) In the 
nucleus. (c) In the trail. The point marks the state which is realized. 

relaxation to the OP vaue q = rlo after the crack tip 
displacement. The layer of phase q = qo = constant 
in the metastable state is left behind the crack - it is 
the metastable trail (Fig. 5). The time "~ of a metastable 
trail decay depends on a barrier value r 
e x p ( - A f l / T )  (Fig. 4) and can be large far from the 
tricritical point (~ = 13 = 0). 

It is necessary to expand some additional energy in 
order to create a metastable trail behind the moving 
crack tip. This energy renorms surface crystal energy 
and increases fracture toughness (1,2). Near the 
branching point, this contribution is small (as well as 
nucleus size). A large contribution to strength can be 
obtained in the case of the developed nucleus ro ~> rc. 
In order to obtain this contribution it is necessary to 

know the nucleus shape and size in the far overcritical 
regime. 

6. The equation of state of nucleus 
in far overcritical regime 

In the case of a large nucleus ro ~> rc the gradient term 
in Equation 3 can be neglected. It results in the crystal 
separating into the region V + (the region of the phase 
q # 0 localization) and V-  (phase r 1 = 0 localization 
region) with unknown phase boundary. The f~ poten- 
tial of the crystal gains the form 

= ~ ( f ( q )  + f~ , (u ,k ) -  f~ A q Z u , ) d V  + 
Jv + 

+ fv fel(Uik)dV - isPiUidS (24) 

The phase boundary F (Fig. 5) can be coherent as well 
as incoherent. The coherence failure (which occurs by 
twinning and boundary dislocations generation) is 
a relatively slow process [22], so it is reasonable to 
consider the LPT on the crack tip as a transition with 
a coherent phase boundary: [ b l i ] l r  ~ ( U  + - -  U / - ) I  r ~- 0 .  

Here the signs " + "  are used to mark the quantity 
values on both phase boundary F sides. It should be 
noted that the coherent phase boundary problem can 
be considered in the framework of flat elasticity theory 
only in the case of a thin plate, because the finite 
constant spontaneous deformation u33 value in V + 
region leads to a large shear stress ~12 and ~13 on 
F arising when the crystal length in the Oz direction 
is large enough. It results in coherency failure or 
the problem being unflat. In order to arrive at the 
thin plate case one has to change X o and A to 
X = 2gko/(Lo + ~t); a l  = 2gA/(X0 + g). 

The state equations may be obtained by the way of 
functional (Equation 24) varying by OP q and by the 
displacement vector ui 

~f 
8q 

O~k 
~xk 

(Yik ~--- 

(~ik l l k  I s 

- - -  2 A l  q u u  = 0 

- 0 (25) 

Xu, 6ik + 2#ui, -- A l r12 81k 

= Pi 

and by the phase boundary F position 

= - ~ { ~  + ~ } [ u ~ ] l ~  = 0 [CYlk] nktr 0 [ f ] l r  1 + 

(26) 

[23, 24]. In (Equation 26) I f ]  = ( f+  - f - ) r , f  + is 
the density value of the first term f -  - the density 
value of the second term in (Equation 24) on F. Equa- 
tions 25 are fulfilled in the region V +. The analogous 
system for V-  can be obtained from (Equation 25) if 
q is equated to zero. 

In the case of phase transitions of a manifested first- 
order the OP has a jump in a PT point, however, it 
further increases with decreasing temperature and is 
often small and can be neglected. The case under 
consideration here is q = qo in the V + region and 
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i"1 = 0 in the V -  region. The elastic constant changes 
in PT point will also be neglected. These assumptions 
are correct for most ferroelectrics [25], as well as for 
a lot of other crystals which undergo PT of a manifes- 
ted first-order PT [26]. 

Equations 25 and 26 make it possible to obtain the 
exact solution of a problem o f  determination of the 
shape and size of a nucleus on the crack tip in the far 
overcritical regime. 

6. The phase boundary 
It has been shown that for the state equations (Equa- 
tion 25) in the flat problem framework the stressed 
state can be described by the Airy function, which is 
biharmonic in the region V + as well as in the region 
V-  [28, 29]. The displacements and stresses can be 
expressed in terms of Kolosov-Muskhelishvily poten- 
tials q)(z) and qJ(z) [30] - t h e  functions of the complex 
coordinate z = x + iy in a form [29]* 

2p(u + iv) = 

{ K,~(z) - z q ) ' ( z )  - ~ ( z )  

~ q ) ( z )  - z q ) ' ( z )  - q , ( z )  - 

(Yxx + Uyy ~- 

i 
s(t)  

i (X ,  + i I1.) ds = 
J s(to) 

+ 

in the phase q = 0 

Cz in the phase q = rl0 

(27) 

4Re q~'(z); %y - ~x~ + 2i~xr 

2(/q~'(z) + ~'(z));  (28) 

~ ( t )  + t q ; ( t )  

qJ(t) t e L  (29) 

Here " - - "  denotes complex conjugation, the prime 
means differentiation by z, Xn + iYn the force acting 
to the contour L , s ( t )  the contour arc, 
K = (X + 3p)/(}v + bt) = 3 - 4v; u and v the displace- 
ment vector components. The last term in Equation 27 
for the phase r I = qo distinguishes Equations 27 to 29 
from the standard flat elasticity theory formulae [30]. 
It describes the spontaneous deformation due to the 
PT: C =  - ~ A ~  rlg/(~ + p). 

The normal stress (Equation 29) continuity condi- 
tion on F (Equation 26) gives the equation 

[q)(t) + tq)'(t) + ~( t ) ]  = 0 t e F  (30) 

while the displacement continuity condition gives 

[~:q)(t) -- tq)'(ti -- qt(t)] = -- Ct t ~ F  (31) 

One can obtain from Equations 30 and 31 the poten- 
tial jumps on F 

C 2C 
[ q ~ ( t ) ] -  t [ ~ ( t ) ] -  K + I  K + I  

The integration Equations 32 with the 
[2ni(t - z)] - 1 gives 

I m,(z) z~ V-  

q)(z) C 
(~,(z)  + g 7 5 z  z~ v 

+ 

t- t 6 F  

(32) 

kern 

(33) 

2C 
~(z )  = ql , (z)  ~c + 1 I ( z )  (34) 

Here q),(z) and qt,(z) are continuous on F functions 

I ( z )  = 2rtil ~ r t  - i - z d t  (35) 

Integral (35) cannot be calculated unless contour F is 
unknown because f is in a common situation a non- 
analytical function - its structure (the number and 
orders of poles, the branching points existence) de- 
pends on the F shape. 

q),(z) and J,,  (z) can be obtained from the boundary 
conditions on the crack contour L. If the displace- 
ments u ( t ) +  i v ( t )=  g(t)  are given on L, one can 
obtain, using Equations 34 and 35 and the first Equa- 
tion 27 

K(p,(t) -- tq)',(t) -- ~ , ( t )  = 2lag(t) 

2C 
+ - - I ( z )  t e L  (36) 

~ ; + 1  

if the force value 

I 
s(t)  

i (X, + iY,)ds = f ( t )  
J s ( t o )  

is given on the crack contour, it can be obtained from 
Equations 29, 33 and 35 

(p,(t) + tq) , ( t )  + ~ , ( t )  = f ( t )  

2C 
+ I ( t )  t E L  (37) 

K + I  

Equations 36 and 37 lead to the equation for q),(z) 

C 
,p,(z) = ,p6(z) + ni(n + 1)(z 2 - a 2 )  1/2 

f L ( t  -- a2)1/2 x I ' ( t ) d t  (38) 
t - - a  

The second term in Equation 38 arises due to the 
nucleus elastic image in the crack contour q%(t) is 
determined by the displacement g(t)  or force f ( t )  
distribution on the crack contour. For example, in the 
boundary problem (Equation 37) case 

1 I '  (t2 - a2)1/2 
q)~(z) = 2rd(z2 - a2) 1/2 ¢_, t L7 z f ' ( t ) d t  

Supposing z = a + p exp(i0), (p/a < 1) considering 
the normal force case X,  = 0, Y,= - p ( t )  and using 
(Equation 8) one can obtain 

K, cos (0/2) 
R e q ) 6 ( z ) -  2(2r~p)l/2 (39) 

Equations 33 and 39 make it possible to calculate the 
stressed state in the case when the contour F is known. 
The contour F shape and size, however, depend on 
stress distribution themselves and have to be deter- 
mined. 

* The usual Kolosov-Muskhelishvily potentials notation q)(z) and t~(z) should not be mixed with Equations 9 and 19, eigenfunctions O, 
and ~ . .  

1076 



To transform the equations of phase boundary 
equilibrium (Equation 26) the strain tensor should be 
divided into two items in V -+ regions: U~k = U~ + U~k. 
U* is continuous on F and uzf is discontinuous on 
F strain tensor part in a corresponding region. 
Analogously Oik  = (Yi~ Jr (Yi~ in accordance with 
(Equation 25). With the help of  Equations 28, 33 and 
35 it can be obtained that 

2C 
~xx + - K + 1 { 1  - R e I ' + ( t ) }  

2C 
cyyy + - K + 1 {1 + ReI '+(t)} 

(Yyy - -  (~.xx 

Taking into account that 

2(X + ~t)u~ + - 2Atl 2 = 

2C 
- R e / ' -  ( t )  (40)  

~ + 1  

~d 2(2 + ~t)ud = ~;/ 

(41) 

one can obtain uff = 0. Substitution of Uik = U~{ + U* 
into the phase boundary equilibria equation results in 

4gu 2 
A f  + Uo~t* = 0 (42) 

K + I  

where u0 = AIq2/2(X + g) is the spontaneous defor- 
mation Uxx = urr = Uo value of the homogeneous crys- 
tal after PT if the crystal is free of external stress. 
A f = f ( q ) -  2(X + ta)u 2, the difference between free 
energy densities of phases q ~ 0 and q = 0 in such 
unloaded crystal. 

The integral in Equation 38 turns to zero (Appendix 
3). Then ~* = 4Req0,(z). The phase boundary equa- 
tion gains the form 

2KlZu 2 

p = 9oCOS(0/2) po = A f + ~ : +  1 4gUo2)e (43) 

Equation 43 is the exact solution of the phase bound- 
ary equilibria equation. 

The integral in Equation 38 becomes zero means 
that the nucleus existence on the crack tip does not 
change the stress intensity factor. It is in agreement 
with previous [17, 18] results and is the consequence 
of the well known fact that the dilatation centres do 
not interact due to the elastic field in the elastically 
isotropic media [31]. In contrast to previous results 
[11, 16-19] the nucleus size depends on A f  The 
po(Af) dependence is the consequence of phase 
boundary equilibria equation being taken into account. 

7. Transformation toughness 
The metastable trail width p, is not more than half of 

the LPT region width Fig. 5. P, ~< 3x/3po/8. Substitu- 
ting Equation 43 into Equation 1 one can obtain 

3 x f 3 K ? u 2  A f  

4n ( A f  + K+l/4gu2 ~2 (44) 

Here from 

here 

D = 

KIC - (1 - D )  I/2 (45) 

3 x ~  41au g Af  
( 4ktug ) 2 (46) 

(~ + 1) Af  + -  
~ : + 1  

and K[ °) is the Griffith's fracture toughness of crystal 
which is not undergoing PT: K[ °) = [2cYoE/(1 - v2)] 1/2. 

8. Discussion 
Considering Cto (Equation 11) in a form 
So = ~'(To - T~), an estimation can be made for the 
difference of the Curie temperature Tc and the nuclea- 
tion temperature To. 

For ferroelectrics BaTiO3, PbTiO3 and 
K T a a _ x N b x O  3 ~ ' ~ 1 0 5 j m C - Z K - 1 ;  A / E ~ I O  - 2 _  

10-1m4C-2 [32], K i c ~ O . 1 M P a m  1/2 [33], and 
taking usual estimation 9~10  -8 j m 3 C  -2 one can 
obtain To - Tc ~ 10 100 K. 

For the nucleus size in the close overcritical regime 
(Equation 13) the estimation gives ro ~ 10-s m. 

Estimating k ~  10 -4 J m s / C  -2 (this k value corres- 
ponds to the OP relaxation time ~ 10 -9 s) one can 
obtain for the critical speed value (23) v~ ~ 300 m s- 1. 

An estimate of the nucleus size 9o (Equation 43) for 
large nucleus in the far overcritical regime using ex- 
perimental data for Z r O 2 K l , , ~ K ~ c ~ l O M P a m  1/2 

[11]; p. = 200 GPa [27]; Uo ~0.1 [34], and supposing 
Af~ tU2o ,  gives 9o ~ 10 -7 m. It is in agreement with 
the observed trail width 9 ,~0 .5  ~tm [2] or several 
micrometres [1] (as well as to the nucleus size dis- 
played in Fig. 1). 

The fact that ZrO2 as well as ferroelectrics BaTiO3, 
PbTiO3 and KTal_xNbxO3 are improper ferroelas- 
tics is not directly considered in this paper. The 
estimations thus show only the qualitative agreement 
of the above theory to experimental data. 

The estimations demonstrate that crack tip nuclei 
can be realized in the wide temperature region of the 
phase diagram. In this region boundary the anomalies 
of physical qualities take place. The anomalies of 
qualities whose values depend on the transformed 
crystal volume (such as the specific heat jump) are 
small as V + ,-~ r 21. The susceptibility can, however, be 
observed in the vicinity of To. In order to calculate the 
susceptibility, the mass t e r m  m ~ Z r l / ~ t  2 and the field 
h o f ( x ,  y ) e x p ( i q ~ z -  iwt)  conjugable to OP have to 
be added to Equation 19. (Here f ( x ,  y) = exp(iqxx+ 
iqry). ) The main term of susceptibility has the form 

( f ( x ,  y), Wo)(Wo, U?o)-1 
Zq,w (~, -- SO + gq 2 - m w  2 - -  i kw  (47) 

if ~ > So. ( f  ~ 'o )=  ~ f W o d x d y .  (Particularly in the 
case q = (0, 0, q=) f = 1, ( f  Wo) (Wo, Wo)- a ~ 12.7.) 
The susceptibility has an anomaly near the nucleation 
temperature To. 

The existence of the nucleus on the crack tip, in the 
phase diagram region where metastable trail cannot 
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l"igure 6 The transformation toughness concentration dependence. 

arise, decreases the fracture toughness. Using the 
additional K~ term AK~ (Equation A2.8) one can 
obtain 

K,c = Kl°c)(1 + R~2) -1 (48) 

which decreases with increasing ~ thus the field, h, 
which is conjugated to OP  results in the crystal crack- 
ing if Kj < K( °~. Using results Equations 47 and 48, 
averaging AKt and considering the OP  amplitude Xho 
to be small, one can obtain 

K,c ~ K~ °~(I - R l X h o l 2 ( f  q%)2) (49) 

Fracture toughness (Equation 49) is a minimum in the 
nucleation point To. 

The transformation toughening phenomenon  is the 
rcsult of a metastable trail arising and can realize only 
in two-phase region of phase diagram (double shaded 
region in Fig. 2). 

D (Equation 46) is a maximum if A f =  41~u2/(~ + 1) 
and vanishes on the boundary  of two-phase region, 

D .... 3 , ,~ /4n .  It results in (o) = (Klc/Kic)max "~ 1.3. 
Considering A f =  b(x - Xc) (here is a concentrat ion 
of a dissolved matter, x¢ - its concentrat ion at the PT 
point) one can obtain K~c(X) depcndence (Fig. 6) (with 
maximum point Xo = x~ + 41auo/b(K + 1) which is in 
the region of stability of the phase r I = 0). This K~c(X) 
dependence is in a qualitative agreement with the 
experimental one for ( Z r O 2 h  _~ (Y203)x [! 0, 20]. 

Appendix 1. 
The Equation 9 solution 
The scale transformation x = roxl ,  y = roy1 results 
(Equat ion 9) in a two-dimensional Shr6dinger 
equat ion 

cos (0/2) 
Ah~ + _ _  W = ~2~  (AI.I) 

where A = OZ/~x2 + ~2/~y2; p = (x? + y2)a/:. 

1 078 

The solution of (Equation Al . l )  of the form 
= e x p ( - e p ) . f ( z )  should be tried, where z = p~/2 

cos(0/2). The equation for f ( z )  is 

f "  - 4 ~ z . f '  - 4(a - z ) f  :: 0 (A1.2) 

The transformation f = tp(x)exp(z/c); x = [ z  .... 
(2~2) - 1] (c/2) t/2 gives 

q ) " - 2 x c p '  + ~tp = 0 (A1.3) 

the Hermitian polynomial equation, L = 2 [ 1 - (4~ 3) - ~ ]. 
The spectrum condition is ~, --- 2n; n = 0, 1, 2, 3 . . .  It 
is not difficult to see that (Equation AI.1) has only 
ground bounded state n = 0, eo = 4-1/3 

Appendix 2. 
The nucleus state equation and 
f~-potential calculation 
Considering the last term in (Equation 6) as the bulk 
force field one can obtain 

where 

f d 3 q = A Gij(q)qjqkO_(q)exp(iqr)(~)3 (A2.2) 

O_(q) = 2~8(q~)Q(qx, q~.); Q(qx, qr) = Sq2( x, y)exp(iqr) 
dZr is the Fourier  image of the O P  square, Gij(q) the 
Fourier  image of the Green function of elastically 
isotropic infinite media 

1 - 2v q~qj (A2.3) 
Gik(q)qJqk -- 2B(l -- V) q2 

Using Equations A2.1 to A2.3 one can obtain 

c y ( 1 )  _ 2..u(1) , .  = (~o + 2~)u~l t) ,- xx 

O.~) = A (l -- 2V)(~'o -J- 2].1~ ]]2 
2 , ( I  -- v) 

A(I -- 2 v ) ~ q 2  d2q 
(1 i- ~ j q 2  Q ( q ) e x p ( i q r ) ( ~ ) 2  (A2.4) 

The boundary  condit ion on the crack L gains the form 

i f (o) ¢w(t) ,r + --r, - p(t) t E L  (A2.5) 

Kleff 0 
o! °) = (2~t-r)l/2fk() Kim = Kx + AK, (A2.6) 

where K~ is given by the expression (Equation 8) and 
AK~ --- AK~ + AKI': 

A(I - -2v)  ; _  ( a , ~ )  1/2 
AK; - (1 ~ v ) - ( ~ Z l / 2  ~ dx " ' 

r qz~ O(q )exp ( iqxx ) (2~2  (A2.7) × j q 2  

A ( 1 -  2v)(Lo + 2.) 2 fl ( a  + x )  '/2 

× e x p (  2'Xt~ra-o')dx4- (A2.8) 

Considering the case a >> ro and making the numerical 

U,k = u!O)+ U!k 1) (A2.1) 

it gives 



calculation of the integral (Equation A2.7) one can 
obtain 

AK~ = R~2KI (A2.9) 

R ~ 0 " 0 2 6 A 2 ( 1 - 2 v ) 2 ( 1  + V ) ( E 9 ( i -  ~ v )  l + 0 . 4 6 ~ 1  - v )  

(A2.10) 

In order to obtain the branching equation for system 
(Equation 6) one has to eliminate u from the first 
Equation 6 using Equations A2.1, A2.2, A2.6 and A2.7 
and display equation in a form 

9An - - 

cos (0/2)'] 
B 

= + ( 1 3  
\ 

A2(1 _- _2v)~ q3 

- v) / 

2AAK1 cos (0/2) 5 
Xo + g (2~r) 1/2 T1 + ~'rl (A2.11) 

The condition of existence of a solution of Equa- 
tion A2.11 is the orthogonality of the right-hand part  
of Equation A2.11 to the eigenfunction of Equation 
9 [21]. Substituting q = ~tPo, AKI (Equations A2.9 
and A2.10) into Equation A2.11 one can obtain the 
branching equation which is the equation of state of 
the crack tip nucleus 

(~ - ~o)~ + 0 .018~  3 + 0.00048y~ 5 = 0 

(A2.12) 

The equation of state must result from the minimum 
condition of the f~-potential, describing the transition 
from the state without the nucleus (~ = 0) to the state 
with nucleus on the crack tip (~ # 0). Integrating 
Equation A2.11 one obtains Equation 14. The poten- 
tial (Equation 23) can be obtained analogously. The 
integrals s,(6) are calculated numerically. The results 
for different values of ~ are given in Table I. 

A p p e n d i x  3. 
C a l c u l a t i o n  of  t h e  in tegra l  I (z) 
c o n t r i b u t i o n  
The calculation of the contribution of Equation 35 to 
Equation 38 is made for the case po/a ~ 1 - the crack 
is considered to be semi-infinite, it right end in the 
co-ordinate origin. The conformal transformation 
z = Po(~ + 1)2,/4 turn the contour of cardioid F into 
the contour of unit circle y, the points of the crack 
contour z = - x + i 0  into ~ = - 1  + iy ,  and points 
z =  - x  - i0 into { =  - 1 - iy Fig. 7a and b. l(z) gains 
the form 

90 (" ,4, I(~) 
(~ + 1) 3 dcy 

+ + + 2) 
IcYl = 1 

(A3.1) 

and it is calculated along the unit circle contour 3'. 
Considering Re~ = - 1 one can calculate the Equation 
A3.1 values on the crack contour { = - 1 _+ iy and after 

(Q) 

L )  ~ A S 
£- , ,3 

Icl 

Figure 7 Calculation of I(z) and its contribution to stress intensity. 
(a) The conformal transformation of the cardioid interior V - into 
the plane part Re ~ ~> -- 1 which lies outside of unit circle. (c) Calcu- 
lation of the integral J(z). L is the crack contour and A the contour 
of integration. 

the transformation to the z plane can obtain 

390 9o 
I(x) - 2(1 - 4X/9o) (1 - 4x/po) 2 (x < O) 

(A3.2) 

Calculation of the integral (Equation 38) now can be 
made exactly. It has to be taken along the contour 
A (Fig. 7c). The integral 

1 ( ( t  ~ - a2)  I/~ 
J(z) . . . . .  j I'(t)dt (A3.3) 

2rd t - z 

is equal to the half of the difference of 
(z 2 - aZ)l/zI'(z) and its singular part, which is 

~ ( a9o )1/2 ( 92 500 
2(z - a - 90/4) 3 + 2(z - a - 90/4) 2 

z - a - 0o/4 (A3.4) 

J(a) takes place in Equation 38. It is not difficult to 
see now that J (a) = 0. The elastic imagination forces 
do not thus give any contribution to Equation 38. 
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